MEMORY Unbuffered $4 \text{ M} \times 72 \text{ BIT}$ SYNCHRONOUS DYNAMIC RAM DIMM

MB8504S072BZ-75/-102/-10

168-pin, 4 Clock, 2-bank, based on 2 M \times 8 Bit SDRAMs with SPD

DESCRIPTION

The Fujitsu MB8504S072BZ is a fully decoded, CMOS Synchronous Dynamic Random Access Memory (SDRAM) Module consisting of eighteen MB81F16822B devices which organized as two banks of 2 M × 8 bits and a 2Kbit serial EEPROM on a 168-pin glass-epoxy substrate.

The MB8504S072BZ features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence.

The MB8504S072BZ is optimized for those applications requiring high speed, high performance and large memory storage, and high density memory organizations.

This module is ideally suited for workstations, PCs, laser printers, and other applications where a simple interface is needed.

			1			
Pa	arameter	MB8504S072BZ-75	MB8504S072BZ-75 MB8504S072BZ-102			
Clock Frequency		133 MHz max.	100 MHz max.	100 MHz max.		
Burst Mode Cycle Time		7.5 ns max.	10 ns max.	10 ns max.		
Output Valid fro	m Clock	6 ns max. (CL = 3)	6 ns max. (CL = 2)	6 ns max. (CL = 3)		
Power	Two Banks Active	5735 mW max.	5184 mW max.	4536 mW max.		
Dissipation	Self Refresh Mode		25.92 mW max.			

■ PRODUCT LINE & FEATURES

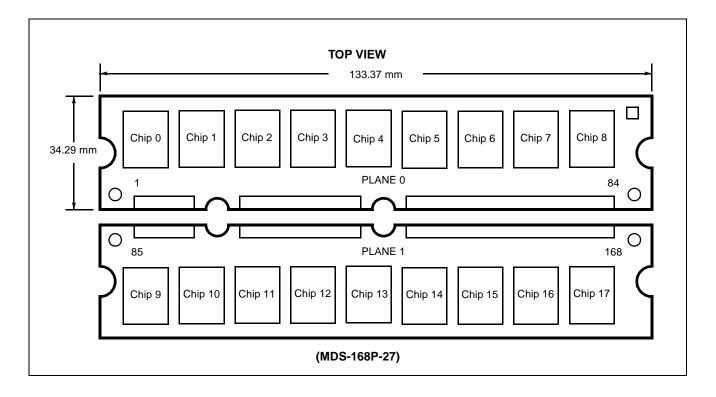
- Unbuffered 168-pin DIMM Socket Type (Lead pitch: 1.27 mm)
- Conformed to JEDEC Standard (4 CLK)
- Organization: 4,194,304 words × 72 bits
- 3.3 V ±0.3 V Supply Voltage
- All input/output LVTTL compatible
- Conformed to Intel PC/100 spec

- 4096 Refresh Cycle every 65.6 ms
- Auto and Self Refresh
- CKE Power Down Mode
- DQM Byte Masking (Read/Write)
- Memory: MB81F16822B (2 M × 8, 2-bank) × 18 pcs.
 Serial Presence Detect (SPD) with Serial EEPROM: JEDEC Standard SPD Format
 - Module size:
 - 1.35" (height) \times 5.25" (length) \times 0.157" (thickness)

■ PACKAGE

168-pin plastic DIMM (socket type)

T.B.D.


(MDS-168P-P27)

Package and Ordering Information

- 168-pin DIMM, order as MB8504S072BZ-××DG (DG = Gold Pad)

■ PIN ASSIGNMENTS

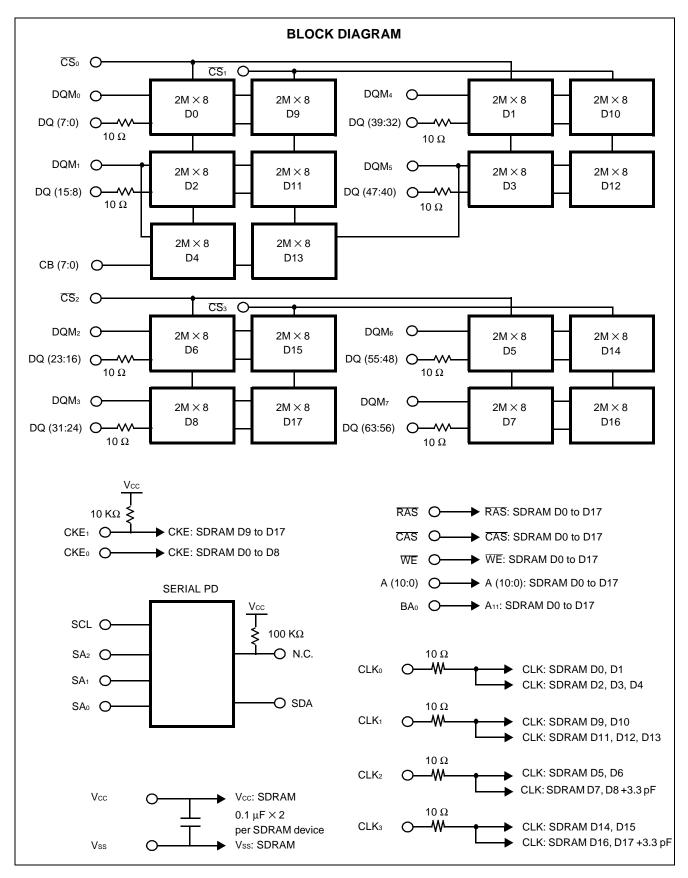
Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	Vss	29	DQMB ₁	57	DQ18	85	Vss	113	DQMB₅	141	DQ50
2	DQ ₀	30	CS ₀	58	DQ19	86	DQ32	114		142	DQ ₅₁
3	DQ ₁	31	N.C.	59	Vcc	87	DQ33	115	RAS	143	Vcc
4	DQ ₂	32	Vss	60	DQ20	88	DQ ₃₄	116	Vss	144	DQ ₅₂
5	DQ₃	33	Ao	61	N.C.	89	DQ35	117	A1	145	N.C.
6	Vcc	34	A2	62	N.C.	90	Vcc	118	Аз	146	N.C.
7	DQ4	35	A4	63	CKE1	91	DQ36	119	A5	147	N.C.
8	DQ₅	36	A ₆	64	Vss	92	DQ ₃₇	120	A7	148	Vss
9	DQ ₆	37	A8	65	DQ21	93	DQ38	121	A9	149	DQ ₅₃
10	DQ7	38	A10	66	DQ22	94	DQ ₃₉	122	BA ₀	150	DQ ₅₄
11	DQ8	39	N.C.	67	DQ ₂₃	95	DQ40	123	N.C.	151	DQ55
12	Vss	40	Vcc	68	Vss	96	Vss	124	Vcc	152	Vss
13	DQ ₉	41	Vcc	69	DQ ₂₄	97	DQ ₄₁	125	CLK ₁	153	DQ56
14	DQ10	42	CLK₀	70	DQ ₂₅	98	DQ ₄₂	126	N.C.	154	DQ ₅₇
15	DQ11	43	Vss	71	DQ ₂₆	99	DQ43	127	Vss	155	DQ58
16	DQ12	44	N.C.	72	DQ27	100	DQ ₄₄	128	CKE ₀	156	DQ59
17	DQ13	45		73	Vcc	101	DQ ₄₅	129	<u>CS</u> ₃	157	Vcc
18	Vcc	46	DQMB ₂	74	DQ28	102	Vcc	130	DQMB ₆	158	DQ60
19	DQ ₁₄	47	DQMB ₃	75	DQ29	103	DQ ₄₆	131	DQMB7	159	DQ ₆₁
20	DQ15	48	N.C.	76	DQ30	104	DQ ₄₇	132	N.C.	160	DQ ₆₂
21	CB ₀	49	Vcc	77	DQ ₃₁	105	CB ₄	133	Vcc	161	DQ ₆₃
22	CB1	50	N.C.	78	Vss	106	CB₅	134	N.C.	162	Vss
23	Vss	51	N.C.	79	CLK ₂	107	Vss	135	N.C.	163	CLK₃
24	N.C.	52	CB ₂	80	N.C.	108	N.C.	136	CB ₆	164	N.C.
25	N.C.	53	CB ₃	81	N.C.	109	N.C.	137	CB7	165	SA ₀
26	Vcc	54	Vss	82	SDA	110	Vcc	138	Vss	166	SA1
27	WE	55	DQ ₁₆	83	SCL	111	CAS	139	DQ48	167	SA ₂
28	DQMB ₀	56	DQ ₁₇	84	Vcc	112	DQMB ₄	140	DQ49	168	Vcc

■ PIN DESCRIPTIONS

Symbol	I/O	Function	Symbol	I/O	Function
Ao to A10, BAo	Ι	Address Input	DQ ₀ to DQ ₆₃	I/O	Data Input/Data Output
RAS	I	Row Address Strobe	CB ₀ to CB ₇	I/O	ECC Data Input/Output
CAS	I	Column Address Strobe	Vcc	—	Power Supply (+3.3 V)
WE	I	Write Enable	Vss	—	Ground (0 V)
DQMB ₀ to DQMB ₇	I	Data (DQ) Mask	N.C.		No Connection
CLK₀ to CLK ₃	I	Clock Input	SA ₀ to SA ₂	I	Serial PD Address Input
CKE ₀ , CKE ₁	I	Clock Enable	SCL	I	Serial PD Clock
CS₀ to CS₃	I	Chip Select	SDA	I/O	Serial PD Address/Data Input/Output

SERIAL-PD INFORMATION

Duto	Function Described			Hex Value	;
Byte	Function Described	-	-75	-102	-10
0	Defines Number of Bytes Written into	128 Byte	80h	80h	80h
	Serial Memory at Module Manufacture				
1	Total Number of Bytes of SPD Memory Device	256 Byte	08h	08h	08h
2	Fundamental Memory Type	SDRÁM	04h	04h	04h
3	Number of Row Addresses	11	0Bh	0Bh	0Bh
4	Number of Column Addresses	9	09h	09h	09h
5 6	Number of Module Banks	2 bank	02h	02h	02h
6	Data Width	72 bit	48h	48h	48h
7	Data Width (Continuation)	+0	00h	00h	00h
8	Interface Type	LVTTL	01h	01h	01h
9	SDRAM Cycle Time (Highest CAS Latency)	7.5/10/10 ns	75h	A0h	A0h
10	SDRAM Access from Clock (Highest CAS Latency)	6/6/6 ns	60h	60h	60h
11	DIMM Configuration Type	ECC	02h	02h	02h
12	Refresh Rate/Type	Self, Normal	80h	80h	80h
13	Primary SDRAM Width	×8	08h	08h	08h
14	Error Checking SDRAM Width	×8	08h	08h	08h
15	Minimum Clock Delay for Back to Back Random Column	1 Cycle	01h	01h	01h
	Addresses	-			
16	Burst Lengths Supported	1, 2, 4, 8, Page	8Fh	8Fh	8Fh
17	Number of Banks on Each SDRAM Device	2 bank	02h	02h	02h
18	CAS Latency	2, 3	06h	06h	06h
19	CS Latency	0	01h	01h	01h
20	Write Latency	0	01h	01h	01h
21	SDRAM Module Attributes	UN-buffer	00h	00h	00h
22	SDRAM Device Attributes	*1	06h	06h	06h
23	SDRAM Cycle Time (2nd. Highest CAS Latency)	11.5/10/15 ns	B5h	A0h	A5h
24	SDRAM Access from Clock (2nd. Highest CAS Latency)	7/6/8 ns	70h	60h	80h
25	SDRAM Cycle Time (3rd. Highest CAS Latency)	No Support	00h	00h	00h
26	SDRAM Access from Clock (3rd. Highest CAS Latency)	No Support	00h	00h	00h
27	Minimum Row Precharge Time (trp)	22.5/20/30 ns	17h	14h	1Eh
28	Row Activate to Row Activate Minimum (trrd)	15/20/20 ns	0Fh	14h	14h
29	RAS to CAS Delay Min. (trcd)	22.5/20/30 ns	17h	14h	1Eh
30	Minimum RAS Pulse Width	45/50/50 ns	2Dh	32h	32h
31	Module Bank Density	16 MByte	04h	04h	04h
32 to 61	Unused Storage Locations	—	00h	00h	00h
62	SPD Data Revision Code	1	01h	01h	01h
63	Checksum for Byte 0 to 62	*2	86h	C0h	C9h
64 to 98	Manufacturer's Information: Unused Storage	—	00h	00h	00h
99 to 125	Vendor Specific Data: Unused Storage	—	00h	00h	00h
126	Intel Specification Frequency	66 MHz	66h	66h	66h
127	Intel Specification CAS Latency Support	CL = 2	02h	02h	02h
128+	Unused Storage Locations	—	—		—


Note: Any write operation must NOT be executed into the addresses of Byte 0 to Byte 127. Some or all data stored into Byte 0 to Byte 127 may be broken.

*1. Byte 22: SDRAM Device Attributes

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TBD	TBD	Upper V _{cc} tolerance	Lower Vcc tolerance	Supports Write 1 /Read Burst	Supports Precharge All	Supports Auto- Precharge	Supports Early RAS Precharge
0	0	0	0	0	1	1	0

*2. byte 63: Checksum for Byte 0 to 62

This byte is the checksum for bytes 0 through 62. This byte contains the value of the low 8-bits of the arithmetic sum of bytes 0 through 62.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Va	Unit	
Falameter	Symbol	Min.	Max.	Unit
Supply Voltage*	Vcc	-0.5	+4.6	V
Input Voltage*	Vin	-0.5	+4.6	V
Output Voltage*	Vout	-0.5	+4.6	V
Storage Temperature	Тѕтс	-55	+125	°C
Power Dissipation	PD		23.4	W
Output Current (D.C.)	Ιουτ	-50	+50	mA

* : Voltages referenced to Vss (= 0 V)

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol		Value		Unit
Faranieter	NOLES	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage		Vcc	3.0	3.3	3.6	V
Supply voltage	·	Vss	0	0	0	V
Input High Voltage, All Inputs	*1	Vін	2.0		Vcc +0.5	V
Input Low Voltage, All Inputs	*2	VIL	-0.5		0.8	V
Ambient Temperature		TA	0	—	+70	°C

*1. Overshoot limit: V_{IH} (max.) = TBD

*2. Undershoot limit: $V_{\mathbb{L}}$ (min) = -1.5 V AC (Pulse Width \leq 5 ns)

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

■ CAPACITANCE

			(Vcc = +3	.3 V, f = 1 MHz,	Ta = +25°C)
Parame	tor	Symbol	Va	lue	Unit
Faraille		Symbol	Min.	Max.	Unit
	Ao to A10, BAo	CIN1	—	89	pF
	RAS, CAS, WE	CIN2	—	99	pF
	CS₀ to CS₃	Сімз	—	36	pF
Innut Conseitance	CKE ₀ , CKE ₁	CIN4		64	pF
Input Capacitance	CLK ₀ to CLK ₃	CIN5	—	45	pF
	DQMB ₀ to DQMB ₇	Сімб	—	24	pF
	SCL	CSCL		6	pF
	SA0, SA1, SA2	CSA	—	7	pF
	SDA	CSDA	—	6	pF
Input/Output Capacitance	DQ0 to DQ63	CDQ	—	19	pF
	CB ₀ to CB ₇	Ссв		19	pF

■ DC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

Devementer Notes		Cumb al	Condition	Va	lue	11:::4
Parameter Notes		Symbol	Condition	Min.	Max.	Unit
	MB8504S072BZ-75		Burst Length = 4 ,		1143	mA
	MB8504S072BZ-102	Icc1s	tcк = min,		1080	mA
Operating Current	MB8504S072BZ-10		Burst Length = 4, t_{RC} = min for BL = 4,1143	mA		
Supply Current)	MB8504S072BZ-75				Min. Max. 1143 1080 900 900 1593 1440 1260 1260 - 7.2 - 7.2 - 7.2 - 360 360 360 - 270 - 90 - 54 972 720 720 720	mA
	MB8504S072BZ-102	ICC1D	tск = min,	Min. Max. L h = 4, r BL = 4, Active, en, Vcc 1143 r Active, en, Vcc 1080 r h = 4, r BL = 4, ctive, en, Vcc 1593 r ft H = 4, r BL = 4, ctive, en, Vcc 1593 r ft Add ft H = 4, r Ctive, en, Vcc 1260 r ft Add ft H = 4, r Ctive, en, Vcc 7.2 r ft Add ft H = 4, r Ctive, en, Vcc 7.2 r ft Add ft H = 4, r Ctive, Vcc 7.2 r ft Add ft H = 4, r Mode, Vcc 7.2 r ft Add ft H = 4, r Mode, Vcc 7.2 r ft Add ft H = 4, r Mode, Vcc 7.2 r ft Add ft H = 4, r Mode, Vcc 7.2 r ft Add ft H = 4, r Mode, Vcc 270 r ft Add ft H = 4, r Mode, Vcc 270 r ft Add ft H = 4, r Mode, Vcc 90 r ft Add ft H = 4, r Mode, Vcc 54 r ft Add ft H = 4, r M	mA	
	MB8504S072BZ-10		Icc1strc = min for BL = 4, tck = min, One Bank Active, Outputs Open, $0 \ V \le V_{IN} \le V_{CC}$ 1080mAIcc1bBurst Length = 4, trc = min for BL = 4, tck = min, All Banks Active, Outputs Open, $0 \ V \le V_{IN} \le V_{CC}$ 1593mAIcc1bCKE = min, for BL = 4, tck = min, All Banks Active, Outputs Open, $0 \ V \le V_{IN} \le V_{CC}$ 1440mAIcc2pCKE = VIL, tck = min, All Banks Idle, Power Down Mode, $0 \ V \le V_{IN} \le V_{CC}$ 7.2mAIcc2psCKE = VIL, CLK = VIH or VIL, All Banks Idle, Power Down Mode, $0 \ V \le V_{IN} \le V_{CC}$ 7.2mAIcc2psCKE = VIH, CLK = VIH or VIL, All Banks Idle, $0 \ V \le V_{IN} \le V_{CC}$ 7.2mAIcc2nsCKE = VIH, CLK = VIH or VIL, All Banks Idle, $0 \ V \le V_{IN} \le V_{CC}$ 270mAIcc2nsCKE = VIH, CLK = VIH or VIL, All Banks Idle, $0 \ V \le V_{IN} \le V_{CC}$ 270mAIcc2nsCKE = VIH, CLK = VIH or VIL, All Banks Idle, $0 \ V \le V_{IN} \le V_{CC}$ 270mAIcc2nsCKE = VIL, CLK = VIH or VIL, All Banks Idle, $0 \ V \le V_{IN} \le V_{CC}$ 90mAIcc3psCKE = VIL, CLK = VIH or VIL, Any Bank Active, AVIN \le V_{CC}54mA			
		ICC2P	All Banks Idle, Power Down Mode,		7.2	mA
Precharge Standby Current (Power Supply Current)		Icc2ps	CLK = V⊮ or V⊾, All Banks Idle, Power Down Mode,	_	7.2	mA
*1	MB8504S072BZ-75		CKE = Vін. tcк = min.		486	
	MB8504S072BZ-102	ICC2N	All Banks Idle,	_	360	mA
	MB8504S072BZ-10			n, <u>486</u> - <u>360</u> 360 - 270		
$ \begin{array}{ c c c c c c } \hline OV \leq V_{N} \leq V_{CC} & OV \leq V_{N} \leq V_{CC} \\ \hline MB8504S072BZ-102 \\ \hline MB8504S072BZ-102 \\ \hline MB8504S072BZ-102 \\ \hline MB8504S072BZ-10 \\ \hline MB8504S072BZ-10 \\ \hline \\ $	_	270	mA			
		Іссзр	Any Bank Active,	_	7.2 7.2 486 360 360 270 90 54 972 720	mA
		ССЗРЅ	CLK = V⊮ or V⊾, Any Bank Active,		54	mA
*1	MB8504S072BZ-75		CKE = VIH. tck = min		972	
	MB8504S072BZ-102	Іссзи	Any Bank Active,	-	7.2 7.2 486 360 360 270 90 54 972 720 720	mA
	MB8504S072BZ-10		$V V \leq V IN \leq V CC$	$ \begin{array}{c} $		
		Іссзия	CLK = V⊮ or V⊾, Any Bank Active,	_	450	mA

(Continued)

(Continued)

Parameter	Nataa		Cumb al	Condition	Va	lue	Unit
Parameter	Notes		Symbol	Condition	Min.	 1593 1260 1260 1800 1440 1440 7.2 7.2 90 90 20 	Unit
Burat Mada Current		MB8504S072BZ-75		tск = min, Gapless data,	_	1593	mA
Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2"Burst Mode Current (Average Power Supply Current)*1MB8504S072BZ-102 MB8504S072BZ-102 MB8504S072BZ-102 MB8504S072BZ-102Icc4Ick = min, Gapless data, Burst Length = 4, Outputs open, Multiple-banks Active, O V $\leq V_{IN} \leq V_{CC}$ Auto-refresh Current (Average Power Supply Current)*1MB8504S072BZ-75 MB8504S072BZ-102 MB8504S072BZ-102Auto Refresh, Ick = min, IccsSelf-refresh Current (Average Power Supply Current)MB8504S072BZ-102 MB8504S072BZ-102IccsSelf-refresh, tck = min, CKE $\leq 0.2 V, 0 \lor V \leq V_{IN} \leq V_{CC}$ IccsSelf-refresh, tck = min, IccsSelf-refresh, tck = min, CKE $\leq 0.2 V, 0 \lor V \leq V_{IN} \leq V_{CC}$ Input Leakage Current (All Inputs)IccsSelf-refresh, tck = VIL, 0 \lor V \leq V_{IN} \leq V_{CC}Input Leakage Current Uput Leakage CurrentIccsOutput is disabled (Hi-Z) 0 \lor \leq V_{IN} \leq V_{CC}Output Leakage Current High Voltage*2VohIoh = -2.0 mA	_	1260	mA				
Supply Current)		MB8504S072BZ-10			_	1260	mA
Auto-refresh Current		MB8504S072BZ-75			_	1800	mA
(Average Power	*1	MB8504S072BZ-102	ICC5			1440	mA
Supply Current)		$\frac{MB8504S072BZ-102}{MB8504S072BZ-10} \qquad \frac{1}{1} \text{trc} = \min, \qquad - 1440 \text{ m}}{0 \text{ V} \le \text{V}_{\text{IN}} \le \text{V}_{\text{CC}}} \qquad - 1440 \text{ m}}$ $\frac{1}{1} \text{ CKE} \le 0.2 \text{ V}, \qquad - 7.2 \text{ m}}{0 \text{ V} \le \text{V}_{\text{IN}}} = 0.2 \text{ V}, \qquad - 7.2 \text{ m}}$	mA				
Solf refreeb Current			Icc6	$CKE \leq 0.2 V$,	_	7.2	mA
	$\frac{I_{CC6}}{I_{CC6A}} = \frac{CKE \le 0.2 \text{ V}, \qquad 7}{O \text{ V} \le \text{V}_{IN} \le \text{V}_{CC}} = \frac{1}{O \text{ V} \le \text{V} \le \text{V}_{CC}} = \frac{1}{O \text{ V} \le \text{V} \le \text{V}_{CC}} = \frac{1}{O \text{ V} \le \text{V} \le \text{V} \le \text{V} \le \text{V} \le \text{V} = \frac{1}{O \text{ V} \le \text{V} \le \text{V} \le \text{V} \le \text{V} = \frac{1}{O \text{ V} \le \text{V} \le \text{V} = \frac{1}{O \text{ V} = \frac{1}{O \text{ V} \le \text{V} = \frac{1}{O \text{ V} =$			7.2	mA		
Input Leakage Currer	nt (All Inj	puts)	lu	All other pins not under test = $0 V$,	-90	90	μΑ
Output Leakage Curr	ent		Ilo	$0 V \leq V_{IN} \leq V_{CC}$	-20	20	μΑ
	*2		Vон	Iон = −2.0 mA	2.4	90 µ 20 µ	V
LVTTL Output Low Voltage	*2		Vol	lo∟ = +2.0 mA	_	0.4	V

Notes: *1. lcc depends on the output termination, load conditions, clock cycle rate and signal clock rate. The specified values are obtained with the output open and no termination register.

*2. Voltages referenced to V_{ss} (= 0 V)

*3. An initial pause (DESL on NOP) of 200 μs is required after power-on followed by a minimum of eight Auto-refresh cycles.

*4. Values except Icc1s, Icc1D and Icc4 are for when one side of the double-sided module is in standby mode (Icc2N) and the other side has two banks active in burst mode.

*5. DC characteristics is the Serial PD standby state ($V_{IN} = GND$ or V_{CC}).

■ AC CHARACTERISTICS

(1) BASE CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)

No.	Parameter Notes		Symbol		IS072BZ 75		S072BZ		S072BZ	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
1	Clock Period	CL = 3	tскз	7.5	—	10	—	10	—	20
1	CIUCK FEIIUU	CL = 2	tск2	11.5	—	10	_	15	—	ns
2	Clock High Time		tсн	2.5	—	3		3	—	ns
3	Clock Low Time		tc∟	2.5	—	3		3	—	ns
4	Input Setup Time		tsi	2	_	2	_	2	—	ns
5	Input Hold Time		tнı	1	—	1	_	1		ns
6	Output Valid from Clock *1, *2	CL = 3	t _{AC3}		6		6		6	ns
Ũ	(tclk = min)	CL = 2	tAC2		7	—	6		8	110
7	Output in Low-Z		t∟z	0	_	0		0		ns
8	Output in High-Z *3	CL = 3	tнzз	2	6	3	6	3	6	
0	Output in Figh-Z 3	CL = 2	tHZ2	3	7	3	6	3	8	ns
9	Output Hold Time	CL = 3	toн	2	—	3		3	—	20
9		CL = 2	LOH	3	—	3	_	3	—	ns
10	Time between Auto-Refree Command Interval	sh	t REFI		15.6		15.6	_	15.6	μs
11	Time between Refresh		t REF		65.6	—	65.6		65.6	ms
12	CKE Low (or CLK Low) Hold Time for Asynchronous Self-Refresh Entry		t ase	100		100		100	_	μs
13	Transition Time		tτ	0.5	2	0.5	2	0.5	2	ns
14	CKE Setup Time for Powe Exit Time	r Down	t CKSP	3	—	3	—	3		ns

No.	Parameter	Notes	Symbol		S072BZ	MB8504S072BZ -102		MB8504S072BZ -10		Unit
			-	Min.	Max.	Min.	Max.	Min.	Max.	
1	RAS Cycle Time	*4	t RC	67.5	_	70	_	80		ns
2	RAS Precharge Time		t RP	22.5	—	20		30	—	ns
3	RAS Active Time		tras	45	100000	50	100000	50	100000	ns
4	RAS to CAS Delay Time	*5	t RCD	22.5		20		30		ns
5	Write Recovery Time		t wr	7.5	—	10		10	—	ns
6	Data-in to Precharge Lead	l Time	t DPL	7.5	—	10		10	—	ns
7	Data-in to Active/Refresh	CL = 3	t dal3	2 cyc + t _{RP}		2 cyc + t _{RP}	_	2 cyc + t ^{RP}		20
1	Command Period	CL = 2	tdal2	1 cyc + t _{RP}		1 cyc + t _{RP}		1 cyc + t _{RP}		ns
8	Mode Register Set Cycle	Time	trsc	15	—	20		20	—	ns
9	RAS to RAS Bank Active Delay Time		t rrd	15	_	20	_	20		ns

(2) BASE VALUES FOR CLOCK COUNT/LATENCY

(3) CLOCK COUNT FORMULA (*6)

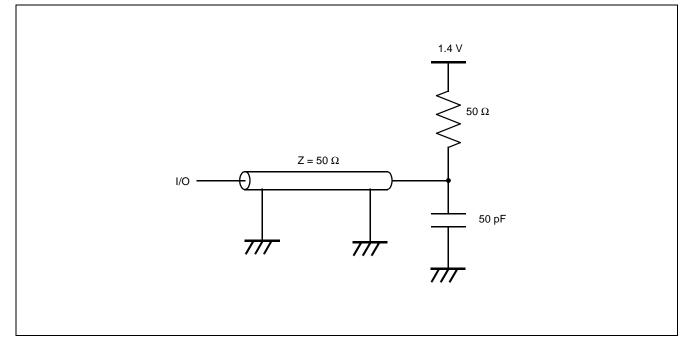
 $Clock \ge \frac{Base Value}{Clock Period}$ (Round off a whole number)

(4) LATENCY (The latency values on these parameters are fixed regardless of clock period.)

No.	Parameter		Symbol	MB8504S072BZ -75	MB8504S072BZ -102	MB8504S072BZ -10	Unit
1	CKE to Clock Disable		Іске	1	1	1	Cycle
2	DQM to Output in High-Z		IDQZ	2	2	2	Cycle
3	DQM to Input Data Delay		IDQD	0	0	0	Cycle
4	Last Output to Write Command Delay		lowd	2	2	2	Cycle
5	Write Command to Input Data Delay		ldwd	0	0	0	Cycle
6	Precharge to Output in High-Z Delay	CL = 3	Ігонз	3	3	3	Cycle
0		CL = 2	ROH2	2	2	2	
7	Burst Stop Command to Output in High-Z Delay	CL = 3	Івѕнз	3	3	3	Cycle
7		CL = 2	вѕн2	2	2	2	
8	CAS to CAS Delay (min)		Ісср	1	1	1	Cycle
9	CAS Bank Delay (min)		Свр	1	1	1	Cycle

Notes: *1. Assumes tRCD is satisfied.

- *2. tac also specifies the access time at burst mode except for first access.
- *3. Specified where output buffer is no longer driven.
- *4. Actual clock count of trc (Irc) will be sum of clock count of tras (Iras) and trp (Irp).
- *5. Operation within the tRCD (min) ensures that access time is determined by tRCD (min) +tAC (max); if tRCD is greater than the specified tRCD (min), access time is determined by tAC.
- *6. All base values are measured from the clock edge at the command input to the clock edge for the next command input.


All clock counts are calculated by a simple formula:

clock count equals base value divided by clock period (round off to a whole number).

- *7. An initial pause (DESL on NOP) of 200 μs is required after power-up followed by a minimum of eight Auto-refresh cycles.
- *8. 1.4 V or V_{REF} is the reference level for measuring timing of signals. Transition times are measured between V_{IH} (min) and V_{IL} (max).
- *9. AC characteristics assume $t_T = 1$ ns and 50 pF of capacitive load.

*Source: See MB81F16822B Data Sheet for details on the electricals.

■ AC OPERATING TEST CONDITION (Example of AC Test Load Circuit)

■ SERIAL PRESENCE DETECT(SPD) FUNCTION

1. PIN DESCRIPTIONS

SCL (Serial Clock)

SCL input is used to clock all data input/output of SPD

SDA (Serial Data)

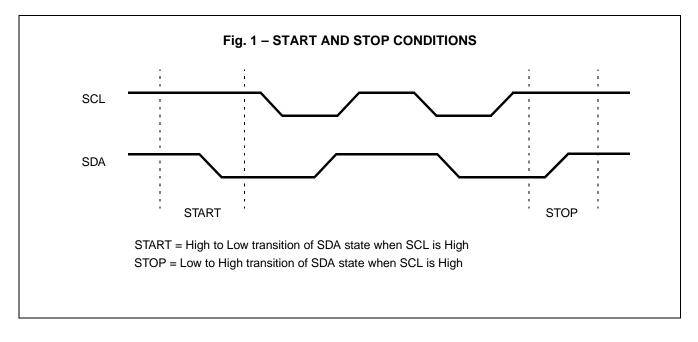
SDA is a common pin used for all data input/output of SPD. The SDA pull-up resistor is required due to the open-drain output.

SA₀, SA₁, SA₂ (Address)

Address inputs are used to set the least significant three bits of the eight bits slave address. The address inputs must be fixed to select a particular module and the fixed address of each module must be different each other.

2. SPD OPERATIONS

CLOCK and DATA CONVENTION


Data states on the SDA can change only during SC L= Low. SDA state changes during SCL = High are indicated start and stop conditions. Refer to Fig. 1 below.

START CONDITION

All commands are preceded by a start condition, which is a transition of SDA state from High to Low when SCL = High. SPD will not respond to any command until this condition has been met.

STOP CONDITION

All read or write operation must be terminated by a stop condition, which is a transition of SDA state from Low to High when SCL = High. The stop condition is also used to make the SPD into the state of standby power mode after a read sequence.

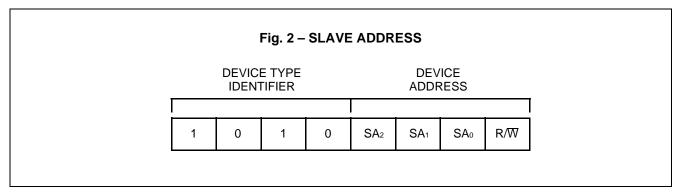
ACKNOWLEDGE

Acknowledge is a software convention used to indicate successful data transfer. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle the receiver will put the SDA line to Low in order to acknowledge that it received the eight bits of data.

The SPD will respond with an acknowledge when it received the start condition followed by slave address issued by master.

In the read operation, the SPD will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is issued by master, the SPD will continue to transmit data. If an acknowledge is not detected, the SPD will terminated further data transmissions. The master must then issue a stop condition to return the SPD to the standby power mode.

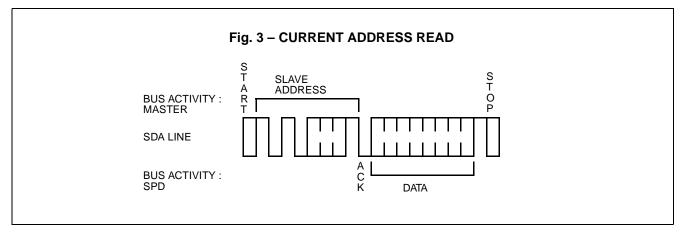
In the write operation, upon receipt of eight bits of data the SPD will respond with an acknowledge, and await the next eight bits of data, again responding with an acknowledge until the stop condition is issued by master.


SLAVE ADDRESS ADDRESSING

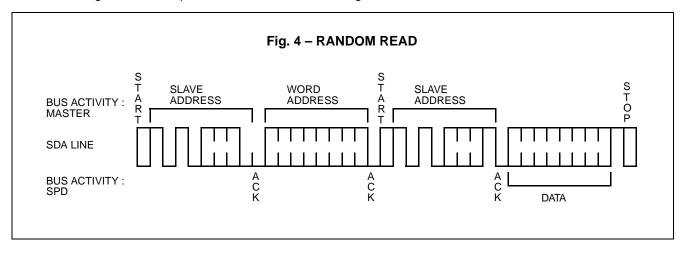
Following a start condition, the master must output the eight bits slave address. The most significant four bits of the slave address are device type identifier. For the SPD this is fixed as 1010[B]. Refer to the Fig. 2 below.

The next three significant bits are used to select a particular device. A system could have up to eight SPD devices —namely up to eight modules— on the bus. The eight addresses for eight SPD devices are defined by the state of the SA₀, SA₁ and SA₂ inputs.

The last bit of the slave address defines the operation to be performed. When R/W bit is "1", a read operation is selected, when R/W bit is "0", a write operation is selected.

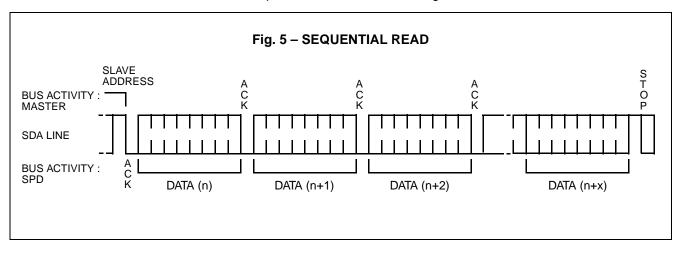

Following the start condition, the SPD monitors the SDA line comparing the slave address being transmitted with its slave address (device type and state of SA₀, SA₁, and SA₂ inputs). Upon a correct compare the SPD outputs an acknowledge on the SDA line. Depending on the state of the R/W bit, the SPD will execute a read or write operation.

3. READ OPERATIONS


CURRENT ADDRESS READ

Internally the SPD contains an address counter that maintains the address of the last data accessed, incremented by one. Therefore, if the last access (either a read or write operation) was to address(n), the next read operation would access data from address(n+1). Upon receipt of the slave address with the R/W bit = "1", the SPD issues an acknowledge and transmits the eight bits of data during the next eight clock cycles. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 3 for the sequence of address, acknowledge and data transfer.

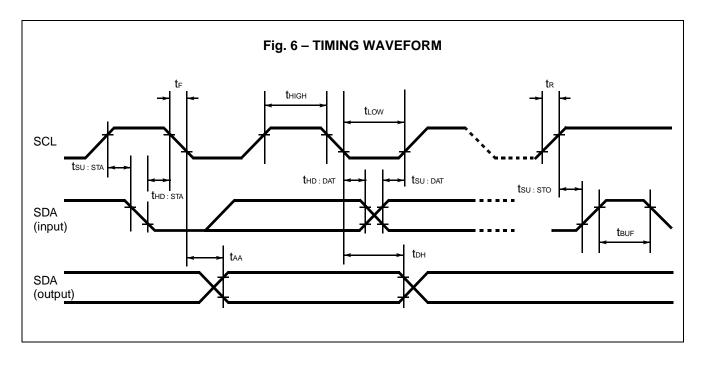
RANDOM READ


Random Read operations allow the master to access any memory location in a random manner. Prior to issuing the slave address with the R/W bit = "1", the master must first perform a "dummy" write operation on the SPD. The master issues the start condition, and the slave address followed by the word address. After the word address acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit = "1". This will be followed by an acknowledge from the SPD and then by the eight bits of data. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 4 for the sequence of address, acknowledge and data transfer.

SEQUENTIAL READ

Sequential Read can be initiated as either a current address read or random read. The first data are transmitted as with the other read mode, however, the master now responds with an acknowledge, indicating it requires additional data. The SPD continues to output data for each acknowledge received. The master terminates this transmission by issuing a stop condition, omitting the ninth clock cycle acknowledge. Refer to Fig. 5 for the sequence of address, acknowledge and data transfer.

The data output is sequential, with the data from address(n) followed by the data from address(n+1). The address counter for read operations increments all address bits, allowing the entire memory contents to be serially read during one operation. At the end of the address space (address 255), the counter "rolls over" to address 0 and the SPD continues to output data for each acknowledge received.


4. DC CHARACTERISTICS

Parameter	Note	Symbol	Condition	Value		Unit
Falameter			Condition	Min.	Max.	Onit
Input Leakage Current		Sili	$0~V \leq V_{\text{IN}} \leq V_{\text{CC}}$	-10	10	μA
Output Leakage Current		SILO	$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}$	-10	10	μA
Output Low Voltage	*1	SVOL	lo∟ = 3.0 mA	—	0.4	V

Note: *1. Referenced to Vss.

5. AC CHARACTERISTICS

No.	Devementer	Symbol	Value		11:::4
	Parameter		Min.	Max.	– Unit
1	SCL Clock Frequency	fsc∟	—	100	KHz
2	Noise Suppression Time Constant at SCL, SDA Inputs	Tı	—	100	ns
3	SCL Low to SDA Data Out Valid	taa	—	3.5	μs
4	Time the Bus Must Be Free Before a New Transmission Can Start	tBUF	4.7	—	μs
5	Start Condition Hold Time	thd:sta	4.0	_	μs
6	Clock Low Period	t∟ow	4.7	_	μs
7	Clock High Period	tніgн	4.0	_	μs
8	Start Condition Setup Time	tsu:sta	4.7	—	μs
9	Data in Hold Time	thd:dat	0	_	μs
10	Data in Setup Time	tsu:dat	250	_	ns
11	SDA and SCL Rise Time	tR	_	1	μs
12	SDA and SCL Fall Time	t⊧	_	300	ns
13	Stop Condition Setup Time	tsu:sto	4.7	-	μs
14	Data Out Hold Time	tон	100	—	ns
15	Write Cycle Time	twr	—	15	ms

To Top / Lineup / Index

MB8504S072BZ-75/-102/-10

■ PACKAGE DIMENSION

168-pin plastic DIMM (socket type) (MDS-168P-P27)

T.B.D.

Dimension in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9711 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.